Die Krankheit zeichnet sich durch die Ablagerung seniler Plaques im Gehirn aus, die vorwiegend aus amyloiden β-Peptiden (Aβ) bestehen; proteolytische Spaltprodukte des β-Amyloid-Vorläufer-Proteins (engl. β-amyloid precursor protein, APP). Die Proteine der APP-Familie besitzen ebenfalls eine zentrale Bedeutung für die neuronale Entwicklung und Selbsterneuerung von Zellen (Homöostase). APP und die paralogen, APP-ähnlichen Proteine APLP1 und APLP2 enthalten die hoch konservierte, strukturelle E2-Domäne, die Heparansulfat bindet und somit verschiedene (patho)physiologische Funktionen des Proteins beeinflusst. Trotz intensiver Forschung zur Pathologie der Alzheimerschen Krankheit und der Beteiligung von APP und seinen Spaltprodukten sind insbesondere die physiologischen Funktionen dieser Proteinfamilie bis heute jedoch nur wenig verstanden.
In Zusammenarbeit mit Kollegen der Freien Universität Berlin und McGill University Montreal in Kanada ist es Forschern des Jenaer Leibniz-Instituts für Altersforschung – Fritz-Lipmann-Institut (FLI) nun erstmals gelungen, die räumliche Struktur der Bindungsdomäne E2 von APLP1 im Komplex mit Heparansulfaten, einer Klasse funktioneller Zucker, detailliert aufzuklären. Für die aktuelle Studie in dem Fachjournal Acta Crystallographica nutzten sie die Methode der Röntgenstrukturanalyse, um die Bindung des Zuckers an das Protein auf molekularer Ebene sichtbar zu machen.
„Aufgrund der sehr komplexen und multiplen Funktion von APP und seinen Homologen müssen wir zunächst viel Grundlagenforschung betreiben, um die Demenzerkrankung und ihre Entstehung fundamental besser verstehen zu können und um einer möglichen zukünftigen Therapie näherzukommen“, erklärt Dr. Manuel Than, Forschungsgruppenleiter am FLI. „Die Röntgenstrukturanalyse des Heparansulfat- Komplexes mit APL1 ergab, dass - anders als bisher angenommen - diese funktionellen Zucker in zwei unterschiedlichen Bindemodi mit der E2-Domäne des APLP1 wechselwirken und es somit eine ganze Reihe verschiedener Komplexe zwischen APLP1-E2 und Heparansulfat gibt“, unterstreicht Than. „Diese spezifische Bindung kann Strukturänderungen im Protein auslösen; ein Indiz dafür, dass Heparansulfate in der Lage sind, die APLP1-Funktion zu regulieren“.
Die mit der E2-Domäne wechselwirkenden Heparansulfate sind eine sehr heterogene Klasse von langen Zuckerketten, die zum Teil an Proteine gebunden sind. „Ihre Bindung weist daher eine sehr heterogene Verteilung von Modifikationen und Ladung auf“, erläutert Dr. Sven Dahms, Postdoc am FLI. „Wir sehen aufgrund der gefundenen Spezifität dieser Wechselwirkung, dass überhaupt nur bestimmte Typen von Heparansulfaten an das APLP1-Protein binden können“. „Aufgrund der hohen Ähnlichkeit ist dieser Mechanismus der Bindung höchstwahrscheinlich bei allen Mitgliedern der APP-Proteinfamilie zu finden, also auch beim Alzheimer-Protein APP“, schlussfolgern die Jenaer Forscher.
Bei der Alzheimerschen Krankheit treten im Verlauf der Erkrankung im Gehirn Entzündungsprozesse auf, die den Abbau von Heparansulfaten verstärken. „Ein veränderter Stoffwechsel dieser Zucker könnte sich daher entscheidend auf deren Interaktion mit den Proteinen der APP-Familie auswirken und dadurch pathologische Fehlfunktionen hervorrufen“, vermuten die Forscher aus Jena. „Mit unseren Ergebnissen konnten wir wieder einen weiteren zentralen Puzzlestein für das Verständnis der Krankheitsentwicklung aufzeigen.“
Publikation
Dahms SO, Mayer MC, Roeser D, Multhaup G, Than ME. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes. Acta Crystallogr D Biol Crystallogr. 2015, 71(Pt 3), 494-504. doi: 10.1107/S1399004714027114.
Kontakt
Dr. Kerstin Wagner
Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI)
Beutenbergstr. 11, 07745 Jena
Tel.: 03641-656378, Fax: 03641-656351
E-Mail: presse@fli-leibniz.de