Subarea 3: Genetics and Epigenetics of Aging
The focus of Subarea 3 is on genetic and epigenetic determinants of life- and health span as well as aging in fish, rodents and humans. This line of research builds on the expertise of the institute in comparative and functional genomics.
The research is defined by five focus areas:
- Comparative genomics in short- and long-lived models of aging,
- Genomic engineering in N. furzeri,
- Epigenetics of aging,
- Non-coding RNAs in aging, and
- Comparative transcriptomics of aging.
Research focus of Subarea 3.
To uncover causative factors for aging, comparative genomics in short- and long-lived model systems are applied. Functional genomics is used to identify novel pathways contribute to aging of an organism and to validate the functional relevance of genetic and epigenetic changes that occur during aging. Furthermore, genetic risk factors for aging-related diseases are identified and functionally tested. The future development of the Subarea aims to integrate changes in host-microbiota interactions during aging, and how these influence clonal mutation and epigenetic alterations through metabolites and other signals.
Publications
(since 2016)
2019
- Cohesin-mediated NF-κB signaling limits hematopoietic stem cell self-renewal in aging and inflammation.
Chen Z, Amro EM, Becker F, Hölzer M, Rasa SMM, Njeru SN, Han B, Di Sanzo S, Chen Y, Tang D, Tao S, Haenold R, Groth M, Romanov VS, Kirkpatrick JM, Kraus JM, Kestler HA, Marz M, Ori A, Neri F, Morita** Y, Rudolph** KL
J Exp Med 2019, 216(1), 152-75 ** co-corresponding authors - Comment on 'Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age'.
Dammann* P, Scherag* A, Zak N, Szafranski K, Holtze S, Begall S, Burda H, Kestler HA, Hildebrandt T, Platzer M
Elife 2019, 8 * corresponding author - SilentMutations (SIM): a tool for analyzing long-range RNA-RNA interactions in viral genomes and structured RNAs.
Desirò D, Hölzer M, Ibrahim B, Marz M
Virus Res 2019, 260, 135-41 - Cell cycle dynamics during diapause entry and exit in an annual killifish revealed by FUCCI technology.
Dolfi L, Ripa R, Antebi A, Valenzano DR, Cellerino A
Evodevo 2019, 10, 29 - TFEB controls vascular development by regulating the proliferation of endothelial cells.
Doronzo G, Astanina E, Corà D, Chiabotto G, Comunanza V, Noghero A, Neri F, Puliafito A, Primo L, Spampanato C, Settembre C, Ballabio A, Camussi G, Oliviero S, Bussolino F
EMBO J 2019, 38(3), e98250 - A CRISPR Activation Screen Identifies Genes That Protect against Zika Virus Infection.
Dukhovny A, Lamkiewicz K, Chen Q, Fricke M, Jabrane-Ferrat N, Marz M, Jung JU, Sklan EH
J Virol 2019, 93(16), e00211-19 - Global importance of RNA secondary structures in protein coding sequences.
Fricke M, Gerst R, Ibrahim B, Niepmann M, Marz M
Bioinformatics 2019, 35(4), 579-83 - Zebrafish Wtx is a negative regulator of Wnt signaling but is dispensable for embryonic development and organ homeostasis.
Große A, Perner B, Naumann U, Englert C
Dev Dyn 2019, 248(9), 866-81 - De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers.
Hölzer M, Marz M
Gigascience 2019, 8(5), giz039 - Publisher Correction: Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly.
Irizar PA, Schäuble S, Esser D, Groth M, Frahm C, Priebe S, Baumgart M, Hartmann N, Marthandan S, Menzel U, Müller J, Schmidt S, Ast V, Caliebe A, König R, Krawczak M, Ristow M, Schuster S, Cellerino A, Diekmann S, Englert C, Hemmerich P, Sühnel J, Guthke R, Witte OW, Platzer M, Ruppin E, Kaleta C
Nat Commun 2019, 10(1), 2459